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A B S T R A C T

To combat climate change caused by cities, it is necessary to perform urban physics modeling
to assess mitigation solutions suitable for future climates. A challenge is availability of reliable
future weather files for investigation of future climate scenarios. This research aims to develop
the Vatic Weather File Generator (VWFG) using the statistical downscaling approach to fill
this gap. VWFG is novel by using a history of weather files over multiple years to downscale
future climate model data utilizing (1) quantile–quantile bias corrections, (2) record matching
by the Finkelstein–Schafer method, and (3) shifting–stretching corrections. This implementation
of VWFG uses the CanRCM4 climate model (1980–2100) and the ERA5 reanalysis data
product as weather files (1980–2020) for two Representative Concentration Pathway (RCP)
scenarios. VWFG outputs are consistent with findings in other studies. Further, to investigate
the performance of VWFG for a case in Toronto, Canada, the Vertical City Weather Generator
(VCWG) is forced by VWFG to predict the building sensible heating and cooling energy demands
for a two-story single-family residential house. It is found that the building sensible heating
demand is reduced over time (∼ 15%–30% for RCP 4.5–8.5 Wm−2) and the building sensible
cooling demand is increased over time (∼ 20%–50% for RCP 4.5–8.5 Wm−2). The amount of
change is greater for RCP 8.5 than RCP 4.5 Wm−2. VWFG is a simple, practical, and widely
applicable tool for urban physics simulations of future climates, particularly in cases where
reliable forcing data is lacking otherwise.

1. Introduction

Designing and operating sustainable buildings require an understanding of future climate and weather conditions. Urban Physics
Models (UPMs) (e.g. EnergyPlus and TRNSYS) are often used to assess different future scenarios (e.g. Special Report on Emissions
Scenarios (SRES), Representative Concentration Pathways (RCP), or Shared Socio-economic Pathways (SSPs) [1]), when choosing
building features for decarbonization, reliability, and resiliency. UPMs often require weather files (for instance in EnergyPlus
Weather (EPW) or International Weather for Energy Calculations (IWEC) formats) for each region with at least hourly time
resolution; however, most future regional/global climate models exhibit coarse spatial and temporal resolutions, so they cannot
directly generate weather files.

Two major methods are used to produce future weather files at hourly time resolution: dynamical and statistical downscaling.
Dynamical downscaling requires physical modeling of future weather, which produces high resolution and more reliable data,
but it is computationally expensive and requires accurate representation of future boundary and initial conditions for the
models at specified regions [2,3]. Statistical downscaling, on the other hand, is simpler and creates a statistical link between
observed/reanalyzed local weather files and future weather datasets provided by regional or global climate models at coarse spatial
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and temporal resolutions [4], but it cannot predict extreme weather conditions reliably [2,3]. Complete review of all downscaling
methods is beyond the scope of this article, but few widely used statistical downscaling methods can be referred to below.

Belcher et al. [5] implemented one of the earlier statistical downscaling methods, titled morphing, to generate future weather
iles. This method used present or baseline weather files to adjust the monthly mean and standard deviation of baseline weather
ariables to those predicted by global climate models. A common morphing strategy is to construct a Typical Meteorological
eather (TMY) file based on a user-specified historical time window as the baseline for downscaling [6,7]. Widely popular

latforms to generate future weather files based on morphing and statistical downscaling for UPMs are the CCWorldWeatherGen
ool, WeatherShiftTM, and Meteonorm. These tools utilize a single climate model or an ensemble of climate models to predict future
eather variables. They create either a single Typical Meteorological Year (TMY) file or additional eXtreme Meteorological Year

XMY) files. They may also apply corrections to the future weather variables [2–4,8,9].
Hosseini et al. [9] implemented one the latest statistical downscaling methods, which combined a hybrid regression and machine

earning (classification) scheme. The method uses observed historical weather files and compares the weather variables with the
utputs of a General Circulation Model (GCM) titled the Geophysical Fluid Dynamics Laboratory Coupled Model Earth System Model
GFDL-ESM2M). The method identifies the appropriate weighting parameters for combining a number of weather variables to match
onthly GCM and observed weather files. It further identifies and removes any bias in the GCM variables based on the observed data.

or cases that future GCM data are beyond the range of the observed data, the method also applies a correction. The downscaling
ethod shows improvements in accuracy compared to a basic morphing method.

Few limitations remain in widely accepted methods that generate future weather files. Perhaps the greatest limitation is the
nclusion of only a single Typical Meteorological Weather (TMY) file as the baseline for future downscaling, which misses multi-year
nd extreme weather variability [2,6,10]. Consideration of multi-year historical weather files is advantageous since such a dataset
an capture extreme weather events, such as heat waves, and the natural inter-annual/decadal variability in climate conditions,
uch as the Atlantic Multi-decadal Oscillation (AMO) or the El Nino-Southern Oscillation (ENSO) [11]. Another limitation is lack of
lexibility in the driving forcing datasets, which include both the sources for the baseline weather files and future regional/global
limate models. For instance, Jentsch et al. [12] emphasizes the importance of the availability of specific regional climate models
over global climate models) for more accurate downscaling of weather files. Region-specific climate models implement more
ealistic boundary conditions and provide datasets at higher spatial and temporal resolutions. The third limitation is the simplicity
f the method for general applicability.

Despite the available tools, there is need for a flexible open source software that can produce future weather files for UPMs.
uch a tool shall (1) take any regional/global climate model with a daily time resolution as a future weather dataset, (2) take any
bservation- or reanalysis-based weather dataset to generate past weather files, (3) take any number of meteorological variables for
tatistical downscaling, by matching and correction of the future weather variables to those variables available in the past weather
iles, and (4) be simple to implement.

The main purpose of this article is to introduce such a tool, titled the Vatic Weather File Generator (VWFG), as a general
urpose future weather file generator based on statistical downscaling. There are key differences between VWFG and other statistical
ownscaling approaches: (1) VWFG considers a history of weather files (as opposed to a single Typical Meteorological Year (TMY)
ile or addition of limited number of eXtreme Meteorological Year (XMY) files) and attempts to match future weather records to
hose of the past and perform bias correction of future weather records using past data toward creation of more accurate future
eather files; (2) VWFG is flexible in the choice of the driving forcing datasets, number of years for analysis, and number of weather
ariables used for downscaling.

The structure of the article is as follows. Section 2 describes the methodology, involving preparation of the input datasets,
he VWFG algorithm, and the introduction of the UPM that is forced with VWFG outputs. Section 3 provides the results and
iscussions, providing some statistical metrics (e.g. bias and root mean square error) to evaluate the performance of VWFG, providing
uantitative future trends for meteorological variables studied, and providing quantitative building energy demands in the future
or a sample building. Section 4 offers the conclusions and future work.

. Methodology

VWFG is developed in Python 3.6. Below in Section 2.1 the input datasets to VWFG are discussed; in Section 2.2 the VWFG
lgorithm is introduced; and in Section 2.3 the UPM, the Vertical City Weather Generator (VCWG) is introduced, which is forced
y the VWFG output for building energy load simulations.

.1. Input datasets

Weather files associated with the historical/validation period(s) are prepared using the ERA5 dataset from the European Centre
or Medium-Range Weather Forecasts (ECMWF). The ERA5 dataset provides the required variables for the EPW file format at
n hourly resolution. The spatial horizontal resolution of the ERA5 dataset is 31 km. Quality-checked monthly updates of ERA5

dataset are available since 1979 until present, and they are published within three months of real time. ERA5 dataset combines
historical observations into global estimates using advanced modeling and data assimilation systems [13]. For generation of
historical/validation period(s) weather files, it may be preferred to use reanalysis data products, as opposed to pure observations,
since reanalysis data are available at greater spatial and temporal resolutions with fewer data gaps. In a sense, reanalysis data can
2

be regarded as ground truth for situations where the quality of weather observations are poor with possibly low spatial or temporal
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Table 1
ERA5 variables used to prepare EPW files.

Data product Variable names

ERA5Land 2 m Dew Point Temperature [°C]
ERA5Land 2 m Temperature [°C]
ERA5Land Soil Temperature [°C]
ERA5Land Wind [ms−1]
ERA5Land Pressure [Pa]
ERA5Land Precipitation [mm]
ERA5 Total Sky Direct Solar Radiation at Surface [Wm−2]
ERA5 Surface Solar Radiation Downwards [Wm−2]
ERA5 Surface Thermal Radiation Downwards [Wm−2]

resolutions. Despite the limitations, reanalysis data can be suitable for universal tools that attempt to perform statistical downscaling
to generate weather files for building simulations.

Urban Physics Models (UPMs) are usually either forced at the top of the urban model domain or at the surface level in a rural
rea nearby a city. For instance, the Urban Weather Generator (UWG) is forced at a nearby rural site [14–17], while the Vertical
ity Weather Generator (VCWG) can be forced either on top of the urban domain or a nearby rural site [18–20].

VWFG considers surface level forcing. Once the specific latitude and longitude for forcing the UPM are selected, VWFG retrieves
ata from two ‘‘Reanalysis’’ products of ERA5.1 These are ‘‘ERA5’’ and ‘‘ERA5Land’’. ERA5Land contains most of the data at high

spatial resolution, except for a few radiative terms, which need to be downloaded from ERA5 at lower spatial resolution. These
variables are listed in Table 1. For the present analysis the coordinates of data retrieval are given by latitude = 43.649889° and
ongitude = −80.121909°, associated with a rural site west of Toronto, Canada. The ERA5 data are downloaded in NetCDF format
nd assembled into EPW files for historical and validation periods.

For generation of future weather files, use of Regional Climate Models (RCMs) is preferred over Global Climate Models (GCMs).
his is the case since RCMs are already one further step downscaled and supplied with more detailed initial and boundary conditions
ertinent to a local region of interest [3,21]. In addition, if extreme climate events are to be accounted for, it may be preferable
ot to perform ensemble averaging of multiple RCMs but instead to rely on a single and accurate RCM that represents local climate
onditions of a region [8].

The Working Group II (WGII) of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) provides
framework for considering future climate scenarios [1]. WGII assesses the literature based on climate model simulations, which are
art of the fifth and sixth Coupled Model Intercomparison Project (e.g. CMIP5, CMIP6) of the World Climate Research Programme.
uture projections are made considering emissions and/or concentrations from Representative Concentration Pathways (RCPs)
nd Shared Socio-economic Pathways (SSPs) scenarios, respectively. However, earlier literature considers future climate scenarios
ased on the fifth Assessment Report (AR5), CMIP6, or other definitions. WGII considers the various literature and provides an
ntegrated SSP-RCP framework to make future climate projections. For instance, SSP-RCP scenarios of 1.9, 2.6, 4.5, 7.0, and 8.5 are
rovided [1].

VWFG uses the Canadian Centre for Climate Modeling and Analysis Regional Climate Model (CanRCM4) to identify and utilize
istorical/validation/future period(s) climate variables under RCPs 4.5 and 8.5 Wm−2. RCP 8.5 Wm−2 represents a business-as-
sual scenario, while RCP 4.5 Wm−2 considers adoption of some mitigation measures in emissions [8]. CanRCM42 is available at

a horizontal grid resolution of approximately 25 km over North America, and its parent global model is CanESM2. CanRCM4 was
developed with the intention to downscale climate predictions and climate projections made by its parent global model. The novelty
of the CanRCM4 stems from the philosophy of coordinating the deployment and application of the Regional Climate Model (RCM)
in close connection with its parent Global Climate Model (GCM). For instance, both RCM and GCM in a coordinated paradigm
adhere strictly to the same physics package [22]. VWFG retrieves the RCM data at a grid point that is closest to the latitude and
longitude specified in the EPW dataset. VWFG uses four climate variables from CanRCM4. These are the mean daily temperature
[K], surface wind speed [ms−1], surface pressure [Pa], and total global horizontal radiation flux [Wm−2]. A sample format of the

anRCM4 dataset is provided as

0: Day of Year [-] 1: lat [deg] 2: lon [deg] 3: tas [K]
4: sfcWind [m s-1] 5: ps [Pa] 6: rad [W m-2]
41.678688 283.323761 265.603729 2.334936 98599.953125 277.086670
41.678688 283.323761 267.726898 1.530065 98223.648438 301.935883
41.678688 283.323761 263.530579 1.622525 98564.757812 291.135010
41.678688 283.323761 264.215393 3.314878 98840.726562 292.283752
41.678688 283.323761 268.024506 3.666362 98211.281250 267.137665
41.678688 283.323761 269.779297 2.717463 98287.382812 329.165802

1 https://cds.climate.copernicus.eu/ (Accessed 18 July 2022).
2 https://climate-modelling.canada.ca/climatemodeldata/canrcm/CanRCM4/ (Accessed 18 July 2022).
3
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An important assumption in the development of VWFG is that the regional Climate Model (CM) is stationary, which postulates
hat the biases in the CM are stationary or vary predictably [23]. In our case, it is desired that the CM biases do not vary with time
n future climate scenarios for a specific location. This hypothesis, however, cannot be tested directly. It is suggested that violations
f stationarity assumption can vary geographically, seasonally, and with the amount of projected climate change [24]. There are
nvestigations showing examples both for and against the stationarity assumption [23–25].

.2. Algorithm

Fig. 1 shows the process diagram of VWFG. Three sets of data are provided as input: (1) the weather files in the EnergyPlus
eather (EPW) format containing the hourly weather variables, which are retrieved from ERA5 reanalysis products; (2) the regional

limate Model (CM) variables containing the mean daily weather variables retrieved from the CanRCM4 regional climate model;
nd (3) the weighing factors to combine weather variables for matching CM records to EPW files.

The diagram shows three time periods for the process flow: (1) the historical time period (1980–1999); (2) the validation time
eriod (2007–2020); and (3) the future time period (2021–2100). It must be noted that the quality control of the ERA5 data suggests
hat the reanalysis products are not reliable in the time period (2000–2006) [13]. Therefore this time period is excluded from the
rocess flow, i.e. there is a data gap from 2000 to 2006.

The overall algorithmic process is described in this paragraph, while the detailed processes are described in the subsequent
aragraphs. For the historical time period, the Quantile–Quantile (Q–Q) method is used to identify the bias in historical CM records
ith respect to the historical EPW records. The historical time period is also used to compute the monthly mean and standard
eviation of four weather variables discussed earlier in the historical EPW records. For the validation period, the Q–Q method is
sed to remove the bias from the validation CM records. Then the Finkelstein–Schafer (F–S) statistic is used on a Q–Q basis to match
he validation CM records to the corresponding historical EPW records for downscaling. Further, the monthly mean and standard
eviation of four weather variables discussed earlier are computed. The pair of means and standard deviations in the validation
M record and the matching historical EPW record enable correcting the created validation EPW record (downscaled validation
M records) by shifting and stretching the distribution for each of the four weather variables. At the end of the calculations for
he validation period, it is possible to perform error analysis to find out if the bias correction or the shift–stretch methods improve
he performance of the downscaling process. This is possible because there are reference validation EPW records for comparison to
he created EPW records (downscaled validation CM records). The error analysis computes the bias and Root Mean Square Error
𝑅𝑀𝑆𝐸) for the four meteorological variables by comparing the downscaled values to the reference validation values. For the future
eriod, similar Q–Q bias correction, Q–Q F–S match, and shift–stretch methods are performed to downscale the future CM records
nto future EPW records. There are no reference values for the future period, so no error analysis is possible; however, having the
rror analysis associated with the validation period increases the confidence in the downscaling method.

The Quantile–Quantile (Q–Q) method is an adjustment made to projected regional/global climate model datasets to identify and
emove the model bias with respect to a reference dataset [26]. For downscaling of climate model data to produce weather files,
he method sorts each of the mean diurnal weather variables in a month and produces a Cumulative Distribution Function (CDF).
or each daily quantile, the shift of this CDF with respect to the reference CDF defines the bias. Thus, the bias for daily quantile 𝑖

over a sample of 𝑗 monthly records is defined as

𝐵(𝑖) = 1
𝑁

𝑁
∑

𝑗=1
(𝑋CM,𝑖,𝑗 −𝑋EPW,𝑖,𝑗 ), (1)

where 𝑋 refers to each of the four variables of mean daily temperature [K], surface wind speed [ms−1], surface pressure [Pa], and
total global horizontal radiation flux [Wm−2]. Ideally 𝑁 ≫ 1 so that many identical months are considered for calculation of the bias.
For instance, if historical records over 20 years are considered (𝑁 = 20), for each month the bias for daily quantile 𝑖 is computed
taking the average of 20 shifts.

The Finkelstein–Schafer (F–S) statistic is also defined on a Q-Q basis, but in this statistic the absolute value of the difference
between the validation or future CM value and the historical EPW value for each quantile is averaged over all quantiles. The F-S
statistic is defined as

𝐹𝑆𝑋 = 1
𝑛

𝑛
∑

𝑖=1
|𝑋CM,𝑖 −𝑋EPW,𝑖|, (2)

here 𝑛 is the number of bins (days) in the CDF. To match future and historical records, a number of meteorological variables must
e selected with appropriate weights to construct a weighted sum statistic. Two conditions are important in deciding the variables
nd the weights: (1) the variables chosen must be the least correlated among one another; and (2) the weights should be increased
or variables that have the highest impact on the building performance metrics under consideration [9,11,27]. For instance, to
etermine the building energy demand, temperature has the greatest impact, followed by pressure, global horizontal radiation flux,
nd wind speed. The weighted sum to be minimized for a match is given by

𝑊𝑆 = 𝑤T𝐹𝑆T +𝑤P𝐹𝑆P +𝑤R𝐹𝑆R +𝑤S𝐹𝑆S. (3)

VWFG requires the user to know, apriori, the importance of the weather variables and the associated weights. The weights for
−2 −1
4

ry bulb temperature 𝑇 [K], 𝑤T, pressure 𝑃 [Pa], 𝑤P, global horizontal radiation flux 𝑅 [Wm ], 𝑤R, and wind speed 𝑆 [ms ],
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Fig. 1. The process diagram for the Vatic Weather File Generator (VWFG); EnergyPlus Weather (EPW) files produced by ERA5 data; Climate Model (CM) files
roduced by the CanRCM4 model; Quantile–Quantile (Q–Q) method; Finkelstein-Schafer (F–S) method; Finkelstein–Schafer (F-S) weights.

Table 2
Weighing factors for meteorological variables in Toronto [9].

Month Dry bulb
temperature

Pressure Radiation Wind speed

January 0.773 0.086 0.078 0.063
February 0.912 0.036 0.027 0.026
March 0.891 0.041 0.036 0.032
April 0.884 0.043 0.038 0.036
May 0.869 0.052 0.043 0.036
June 0.887 0.048 0.037 0.028
July 0.830 0.064 0.057 0.048
August 0.868 0.057 0.045 0.030
September 0.829 0.068 0.054 0.048
October 0.831 0.060 0.056 0.053
November 0.905 0.039 0.031 0.025
December 0.922 0.027 0.026 0.026

𝑤S, are provided by Hosseini et al. [9,27], who used classification methods based on machine learning to find the variables meeting
5

he weighted sum criteria mentioned above. Table 2 shows the weighing factors used by VWFG.
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Fig. 2. The shift and stretch method adjusts the EnergyPlus Weather (EPW) record (red) to the Climate Model (CM) record (green) so that the modified EPW
record (blue) exhibits the same mean and standard deviation (𝑋EPWSS

, 𝑆EPWSS
) as the CM record (𝑋CM, 𝑆CM); each distribution is associated with mean daily

values of meteorological variables for one month. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

The shift and stretch method is demonstrated in Fig. 2 . It adjusts the average and standard deviation of the created validation
or future EPW record to those of validation or future CM record, respectively [5]. Since the validation or future CM record only
provides mean daily values of meteorological variables, the created validation or future EPW record is first averaged to produce
mean daily values of the same variables, and then the mean and standard deviation of the variables are used for the shift and stretch
method via

𝑋EPWSS = 𝑋CM +
(

𝑋EPW −𝑋EPW

) 𝑆CM
𝑆EPW

, (4)

where 𝑋EPWSS is the adjusted record, 𝑋CM is the mean daily value of the meteorological variable in the validation or future CM
record, 𝑋EPW is the mean daily value of the created validation or future EPW record, 𝑆CM is the standard deviation of daily value
in the validation or future CM record, and 𝑆EPW is the standard deviation of the daily value in the created validation or future EPW
record. Note that each distribution represents one month, and twelve corrections are needed to adjust a full year of data.

2.3. Urban physics model

To demonstrate the utility of the statistical downscaling method, the resulting future climate EPW weather files are used as
boundary and forcing conditions for a UPM titled the Vertical City Weather Generator (VCWG) [18–20]. VCWG is a computationally-
fast UPM that predicts temporal and vertical variation of meteorological variables in the urban environment, building envelope
temperatures, and temporal variation of building performance metrics, such as indoor air temperature, indoor specific humidity,
building thermal and electricity loads, and natural gas and electricity consumptions [19]. Various versions of VCWG are available.
VCWG v1.3.2 is the original version [19]. It was enhanced with renewable and alternative energy integration in VCWG v1.4.5
and v1.4.6 [18]. The key difference between v1.4.5 and v1.4.6 is that v1.4.5 requires use of all renewable and alternative energy
components, while v1.4.6 allows for utilization of solar photovoltaics and wind energy only, in addition to permitting an overall
simulation including solar thermal energy, energy storage, heat pumps, and phase change materials. In this analysis VCWG v1.4.6
is used without the consideration of any renewable or alternative energy. VCWG v2.0.0 is the latest version so far, which includes
hydrological processes [20] in addition to the base model features of VCWG 1.3.2.

As shown in Fig. 3, VCWG is composed of many sub-models: a rural model, a one-dimensional urban vertical diffusion model,
a radiation model, and a building energy model. VCWG is forced with weather data from a rural site at the vicinity of the urban
area in Toronto, Canada. This dataset is the outcome of the VWFG from 2021 to 2100 for two RCP scenarios (4.5 and 8.5 Wm−2).
The rural model is used to solve for the vertical profiles of meteorological variables and friction velocity at 10 m a.g.l. The rural
model also calculates a horizontal pressure gradient. The rural model outputs are forced on the urban vertical diffusion model that
solves vertical transport equations for meteorological variables. This vertical diffusion model is linked to the radiation and building
energy models using feedback interaction. The effects of buildings and vegetation are considered. The two-way interaction coupling
scheme among the sub-models is designed to update the boundary conditions, surface temperatures, and the source/sink terms in
the transport equations in successive time step iterations. This is known as ‘‘ping-pong’’ coupling.

In this study the building archetype is a two-story single-family residential building. Table 3 shows the input parameters
associated with the simulations in residential areas of Toronto. The input parameters are informed by previous field campaigns
and simulations in south-western Ontario [18,28–30].

3. Results and discussion

Section 3.1 provides the Cumulative Distribution Functions (CDFs) for the meteorological variables and demonstrates the success
of VWFG in matching a sample record from the validation period to one of the historical periods. Section 3.2 visualizes the matching
6
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Fig. 3. Overview of the Vertical City Weather Generator (VCWG v1.4.6) model and the integration of sub-models.

Table 3
List of input parameters used in VCWG.

Parameter Symbol Value

Latitude [◦N] lat 43.732
Longitude [◦W] lon 79.573
Average buildings height [m] 𝐻𝑎𝑣𝑔 6
Width of canyon [m] 𝑤𝑥 = 𝑤𝑦 = 𝑤 23
Building width to canyon width ratio [–] 𝑏𝑥∕𝑤𝑥 = 𝑏𝑦∕𝑤𝑦 = 𝑏∕𝑤 0.42
Leaf Area Index [m2 m−2] 𝐿𝐴𝐼 0–1
Tree trunk height [m] ℎ𝑡 3.6
Tree crown radius [m] 𝑟𝑡 1.8
Tree distance from wall [m] 𝑑𝑡 5
Ground vegetation cover fraction 𝛿𝑠 0.5
Building type – Mid rise apartment
Urban albedos (roof, ground, wall, vegetation) [–] 𝛼𝑅 , 𝛼𝐺 , 𝛼𝑊 , 𝛼𝑉 0.22, 0.125, 0.225, 0.225
Urban emissivities (roof, ground, wall, vegetation) [–] 𝜀𝑅 , 𝜀𝐺 , 𝜀𝑊 , 𝜀𝑉 0.95, 0.95, 0.95, 0.95
Rural overall albedo [–] 𝛼𝑟𝑢𝑟 0.2
Rural overall emissivity [–] 𝜀𝑟𝑢𝑟 0.95
Rural aerodynamic roughness length [m] 𝑧0𝑟𝑢𝑟 = 0.1ℎ𝑟𝑢𝑟 0.2
Rural roughness length for temperature [m] 𝑧𝛩,𝑟𝑢𝑟 = 0.1𝑧0𝑟𝑢𝑟 0.02
Rural roughness length for specific humidity [m] 𝑧𝑄,𝑟𝑢𝑟 = 0.1𝑧0𝑟𝑢𝑟 0.02
Rural zero displacement height [m] 𝑑𝑟𝑢𝑟 = 0.5ℎ𝑟𝑢𝑟 1
Rural Bowen ratio [–] 𝛽𝑟𝑢𝑟 1.5
Ground aerodynamic roughness length [m] 𝑧0𝐺 0.02
Roof aerodynamic roughness length [m] 𝑧0𝑅 0.02
Vertical resolution [m] 𝛥𝑧 1
Time step [s] 𝛥𝑡 60
Canyon axis orientation [◦N] 𝜃𝑐𝑎𝑛 45

months from the historical records that best agree with future records. Section 3.3 quantifies the bias reduction in the climate model
records as a result of the bias correction procedure. It also quantifies the effect of shifting and stretching procedure on the errors
in the weather file records. Sections 3.4 and 3.5 quantify the time series for the selected meteorological variables and temperature
trends. They also compare the findings to other studies in the literature. Section 3.6 investigates a sample building’s heating and
cooling demands simulated using the output of the VWFG tool.

3.1. Cumulative distribution functions

Fig. 4 shows the CDFs of the four meteorological variables discussed earlier. The CDFs are constructed by considering mean daily
values of each variable. Each CDF is associated with one month of data. The gray curves belong to historical EPW records, where all
prior CDFs are plotted over the historical period (1980–1999). The blue curve is a sample validation CM record from the validation
period (December 2009), and the red curve is the matched record from historical EPW weather files that is chosen using the F-S
method. It can be seen that the CDFs match more closely for temperature, given the fact that the weighing factor for temperature
is the highest, while the CDFs match less closely for other meteorological variables.

3.2. Matching months for future climate

It is interesting to investigate which months from the historical period match with which months in the future period. For
instance, would a January always be matched with a January? or could a January also be matched with a December or any other
7
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Fig. 4. Cumulative Distribution Functions (CDFs) for (a) dry bulb temperature, (b) radiation, (c) pressure, and (d) wind speed; all historical EnergyPluse Weather
EPW) weather file records in gray; sample validation Climate Model (CM) record to match in blue (December 2009); matching historical EPW record in red
December 1997); results for Toronto under RCP 4.5 Wm−2 climate scenario. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

onth that also has 31 days? Fig. 5 visualizes the matching months for the future period from the historical EPW records. The
ertical axis in the color plot shows future years, the horizontal axis shows the future months, and the color bar shows the historical
onths. The color plots are provided for the two RCP scenarios analyzed (4.5 and 8.5 Wm−2).

Two factors influence the patterns for matching months: (1) the number of days in a month and (2) the similarity of
eteorological conditions. For instance, it can be seen that only historical Februaries match future Februaries, given that only

ebruary has 28 days. For other months, it can be seen that the shoulder months can also match with one another, in addition to
he same month. For instance, a future March (31 days) can match with a historical March as well as a historical October (31 days),
hich is a shoulder month for March. It can be speculated that with warming trends, distant future winter months may be matched
y historical spring or fall months, or that distant future spring or fall months may be matched by historical summer months. For
xample, a future warm January may match with a historical March or October. However, for the period of analysis until 2100,
his situation is not predicted. Perhaps, with time horizons much beyond 2100, the shifting patterns in the matching months may
e encountered. As far as the two RCP scenarios are concerned, there is no particular difference for the month matching patterns
etween the two color plots.

.3. Error reduction in climate model and weather files

It is desirable to investigate if the statistical techniques used actually improve the downscaling method. Notably, the validation
eriod (2007–2020) can be used (1) to compare the bias-corrected validation CM records to the non-bias-corrected validation CM
ecords and (2) to compare the created stretched-shifted validation EPW records to the created non-stretched-shifted validation EPW
ecords. The RCP case of 4.5 Wm−2 is used for this analysis.

We begin this investigation for the bias correction of the validation CM records. Fig. 6 shows the CDFs of the validation CM bias
n dry bulb temperature with and without bias correction. For reference, the zero bias line is plotted using a gray vertical line. The
8
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Fig. 5. Future climate matching months for (a) RCP 4.5 Wm−2 and (b) RCP 8.5 Wm−2; color bar showing the months in the historical EnergyPlus Weather
(EPW) weather file records, chosen to match future Climate Model (CM) records. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 6. Cumulative Distribution Functions (CDFs) for the bias of dry bulb temperature in the validation Climate Model (CM) records compared to validation
EnergyPlus Weather (EPW) weather file records for the validation period using RCP 4.5 Wm−2 for (a) no bias correction and (b) bias correction cases.

non-bias-corrected records show that the temperature is mostly positively biased in the winter months followed by less positively
biased temperatures in other seasons. Overall, temperatures are biased from 0 to 5 °C given the quantile and month of interest. The
bias correction procedure results in reduced biases, so that the CDFs move to the left and reach closer to the zero bias line.

Fig. 7 shows the CDFs of the validation CM bias in pressure with and without bias correction. Similar to the temperature bias,
the non-bias-corrected records show that the pressure is entirely positively biased by about 1000 to 2000 Pa, and the bias correction
procedure results in reduced biases, so that the CDFs move to the left and reach closer to the zero bias line.

Fig. 8 shows the CDFs of the validation CM bias in global horizontal radiation flux with and without bias correction. Similar
to the temperature and pressure biases, the non-bias-corrected records show that the radiation flux is entirely positively biased by
about 0 to 75 Wm−2, and the bias correction procedure results in reduced biases, so that the CDFs move to the left and reach closer
to the zero bias line.

Fig. 9 shows the CDFs of the validation CM bias in wind speed with and without bias correction. Unlike temperature, pressure,
and radiation flux, the non-bias-corrected records do not show a systematic shift toward positive or negative biases. Nevertheless,
the bias correction procedure accumulates the CDFs closer to the zero bias line, except for the highest quantiles, which indicate
very high wind speeds. It must be noted that wind patterns are very sensitive to the resolution, topography, and land use conditions
of the driving reanalysis data product or climate model [31–35]. Such conditions can change over the period of few decades that
specify the historical and validation time periods. Therefore, the success of the bias reduction procedure is more difficult to interpret.
However, given the shape of the CDFs, there is evidence that the bias correction procedure improves the downscaling method.
9
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Fig. 7. Cumulative Distribution Functions (CDFs) for the bias of pressure in the validation Climate Model (CM) records compared to validation EnergyPlus
eather (EPW) weather file records for the validation period using RCP 4.5 Wm−2 for (a) no bias correction and (b) bias correction cases.

Fig. 8. Cumulative Distribution Functions (CDFs) for the bias of global horizontal radiation flux in the validation Climate Model (CM) records compared to
alidation EnergyPlus Weather (EPW) weather file records for the validation period using RCP 4.5 Wm−2 for (a) no bias correction and (b) bias correction cases.

We can next assess the impact of the stretching–shifting method on reducing the errors in the created validation EPW records
for the validation period. Table 4 shows the computed biases and Root Mean Square Errors (𝑅𝑀𝑆𝐸s) before and after the shifting–
stretching procedure is applied to the created validation EPW records for the validation period. The averages of the biases and
𝑅𝑀𝑆𝐸s are also provided. It can be seen that no statistically notable change can be predicted. This is likely due to the fact that the
validation period is only one decade apart from the historical period, and for all matches, distributions of the weather variables in
both validation and historical periods have similar means and standard deviations. However, the shift–stretch method is crucial to
keep in the downscaling process since future decades by the end of century will likely be associated with large temperature shifts
compared to historical records. This point will be elucidated in Section 3.4.

3.4. Future climate time series

The downscaled future EPW weather files can be analyzed from 2021 to 2100. Both RCP scenarios of 4.5 and 8.5 Wm−2 can be
considered. Figs. 10 to 13 show the time series of dry bulb temperature, pressure, global total horizontal radiation flux, and wind
speed. Four selected months of January, April, July, and October are chosen for demonstration. In each figure, the markers show
the monthly average and the shaded area shows one standard deviation of the monthly weather variables in the created future EPW
records. The most notable figure with a clear trend is Fig. 10 for temperature. Overall, temperatures for all months and both RCP
scenarios increase, except for a temporary decade of cooling in 2090 s. It can be noted that the warming trend is more accelerated
for the RCP 8.5 Wm−2 scenario. This point will be further elucidated in Section 3.5.
10
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Fig. 9. Cumulative Distribution Functions (CDFs) for the bias of wind speed in the validation Climate Model (CM) records compared to validation EnergyPlus
Weather (EPW) weather file records for the validation period using RCP 4.5 Wm−2 for (a) no bias correction and (b) bias correction cases.

Table 4
Table of biases (𝐵) and Root Mean Square Errors (𝑅𝑀𝑆𝐸s) showing the effect of shifting and stretching method on the created
validation EnergyPlus Weather (EPW) weather file records for RCP 4.5 Wm−2.

Error statistic 𝐵 𝐵 𝐵 𝐵 𝑅𝑀𝑆𝐸 𝑅𝑀𝑆𝐸 𝑅𝑀𝑆𝐸 𝑅𝑀𝑆𝐸
Variable 𝑇 𝑃 𝑅 𝑆 𝑇 𝑃 𝑅 𝑆
Units [°C] [Pa] [Wm−2] [ms−1] [°C] [Pa] [Wm−2] [ms−1]

No shift-stretch

January 0.78 −54 −0.28 −0.07 8.59 1334 73 2.00
February 0.67 60 2.50 −0.26 9.30 1230 95 1.94
March 0.20 −117 −1.93 −0.09 8.27 1133 130 1.90
April 2.12 78 −0.72 −0.25 8.17 1120 167 1.92
May 0.41 31 −11.28 0.02 6.72 854 175 1.72
June 0.45 138 1.37 −0.04 5.20 776 158 1.61
July 0.20 29 −2.79 0.01 4.47 552 135 1.48
August −0.98 100 −6.02 −0.01 4.34 660 128 1.44
September −0.87 −151 −12.5 0.09 5.37 819 126 1.63
October −1.07 189 −3.85 −0.20 5.70 1003 104 1.85
November 0.11 −83 −2.12 0.08 6.82 1122 77 2.01
December −1.34 −131 −2.98 0.05 7.02 1176 65 1.92

Average 0.05 7 −3.38 −0.06 6.66 982 119 1.79

Shift-stretch

January 0.24 −68 3.33 −0.02 8.60 1357 80 1.97
February 1.56 23 6.86 −0.15 9.39 1219 103 1.89
March −0.04 −163 3.24 −0.05 8.56 1176 139 1.92
April 0.92 47 2.69 −0.30 7.73 1135 187 1.89
May 0.58 1.91 −0.43 0.06 6.39 873 177 1.77
June 0.68 107 7.99 −0.04 5.48 786 169 1.64
July 0.92 2 10.20 0.07 4.48 562 149 1.57
August −0.41 73 −6.36 0.071 4.69 663 150 1.47
September −0.13 −173 −3.48 0.11 5.51 816 137 1.64
October −0.20 174 1.75 −0.09 5.83 1063 108 1.89
November 0.07 −98 −0.33 0.03 6.83 1142 85 1.97
December −1.23 −226 −6.39 0.03 6.94 1231 72 1.89

Average 0.25 −25 1.59 −0.02 6.70 1002 130 1.79

3.5. Dry bulb temperature trends

The temperature trends can be further analyzed by fitting lines to the time series and computing the warming rate for each
onth and each RCP scenario [36]. Table 5 shows the warming trends. Overall, the RCP 8.5 Wm−2 scenario shows accelerated

warming compared to the RCP 4.5 Wm−2 scenario for all the months. Under the RCP 4.5 Wm−2 scenario, the rate of warming is the
greatest for August (0.033 °Cyear−1), September (0.035 °Cyear−1), and October (0.03 °Cyear−1). Similarly, under the RCP 8.5 Wm−2
11
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Fig. 10. Future climate temperature time series for (a) RCP 4.5 Wm−2 and (b) RCP 8.5 Wm−2; the markers and shaded region showing the mean and one
tandard deviation, respectively, for annual daily values produced by the created future EnergyPlus Weather (EPW) weather file; showing selected months of
anuary, April, July, and October.

cenario, the rate of warming is the greatest for August (0.079 °Cyear−1), September (0.067 °Cyear−1), and October (0.085 °Cyear−1).
n average, the annual rate of warming for RCPs 4.5 and 8.5 Wm−2 are 0.027 °Cyear−1 and 0.062 °Cyear−1, respectively.

These temperature trends can be compared against those provided in the recent IPCC report and other studies. For instance,
lobal temperature rise from 2021 to 2100 for RCP 4.5 and 8.5 Wm−2 scenarios are predicted as 1.5 °C and 3.5 °C, respectively [1].
n a per year basis, these values are 0.019 °Cyear−1 and 0.044 °Cyear−1, respectively. As suggested by the IPCC report, most Canadian
ities, including Toronto, will experience a warming rate greater than the global average.

A study by D’Agostino et al. [7] reports observed rates of warming for various European cities, including Milan, Italy, which is
ocated at a similar latitude to Toronto. For Milan, a warming rate of 0.056 °Cyear−1 in the period 1973–2018 is measured, which is
lso lower to the rate of warming under the RCP 8.5 Wm−2 scenario for Toronto. The same study used the morphing approach and
he WeatherShiftTM tool to predict the future weather conditions in 2060 under the RCP 8.5 Wm−2 scenario in Milan, Italy [10].
he predicted rate of warming until 2060 is 0.080 °Cyear−1, which is higher than that predicted by VWFG in Toronto.

Comparing the temperature trends provided by VWFG and the studies reported above suggests that the rate of warming in
oronto is greater than the globally predicted rate of warming and comparable to the rate of warming in other locations of similar

atitude. These results provide confidence in the skill of the VWFG to perform statistical downscaling of future climate records into
eather files.

.6. Building energy demands under future climate

Fig. 14 shows the projected building sensible heating and cooling demands from the present time until 2100 predicted by VCWG
very decade. Both RCP 4.5 and 8.5 Wm−2 scenarios are considered. Overall, the building sensible heating demand is reduced
12
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Fig. 11. Future climate radiation flux time series for (a) RCP 4.5 Wm−2 and (b) RCP 8.5 Wm−2; the markers and shaded region showing the mean and one
standard deviation, respectively, for annual daily values produced by the created future EnergyPlus Weather (EPW) weather file; showing selected months of
January, April, July, and October.

Table 5
Dry bulb temperature trends [°Cyear−1] from 2021 to 2100
in Toronto under RCP 4.5 and 8.5 Wm−2 scenarios.

Month Trend [°Cyear−1] Trend [°Cyear−1]
RCP 4.5 Wm−2 RCP 8.5 Wm−2

January 0.031 0.057
February 0.030 0.064
March 0.031 0.041
April 0.029 0.052
May 0.020 0.063
June 0.016 0.066
July 0.023 0.067
August 0.033 0.079
September 0.035 0.067
October 0.032 0.085
November 0.018 0.053
December 0.021 0.047

Average 0.027 0.062
13



Journal of Building Engineering 67 (2023) 105966A.A. Aliabadi and R.M. McLeod

4
b
T
m

a
u
(
i

f
f
d

2
e
w

Fig. 12. Future climate pressure time series for (a) RCP 4.5 Wm−2 and (b) RCP 8.5 Wm−2; the markers and shaded region showing the mean and one standard
deviation, respectively, for annual daily values produced by the created future EnergyPlus Weather (EPW) weather file; showing selected months of January,
April, July, and October.

over time (∼15–30% for RCP 4.5–8.5 Wm−2) and the building sensible cooling demand is increased over time (∼20–50% for RCP
.5–8.5 Wm−2). The amount of change is greater for RCP 8.5 than RCP 4.5 Wm−2. For RCP 4.5 Wm−2 there is an anomaly for
uilding sensible cooling demand in year 2090, which shows a substantial reduction compared to the previous and next decade.
his anomaly is consistent with Fig. 10a, which also shows a temporary cooling effect on temperature around 2090s for the selected
onths.

The results provided by VWFG and VCWG can be compared with some other investigations. For instance, Troup et al. [8] studied
n office buildings in Boston, U.S.A, using EnergyPlus for future climate impacts on building energy demand from the current climate
ntil 2090s. They used an ensemble of fourteen Global Climate Models (GCMs) and two Representative Concentration Pathways
RCPs) of 4.5 and 8.5 Wm−2 for statistical downscaling and morphing of weather files into the future. They found that the increase
n building energy consumption is dominated by increasing cooling demand of about 10%.

D’Agostino et al. [7] studied building energy demands of various European cities from the present time to 2060 using a weather
ile dataset created via morphing with the application of the WeatherShiftTM tool, considering the RCP 8.5 Wm−2 scenario. They
ocused on two-story residential buildings, and conducted the building energy analysis using EnergyPlus. They reported a heating
emand decrease of 38–57% and a cooling demand increase of 90–380% by 2060.

Bamdad et al. [4] studied building energy demands of two Australian cities, Brisbane and Canberra, from the present time to
080 using a weather file dataset created via morphing with the application of the CCWorldWeatherGen tool, considering the A2
mission scenario from the Fourth Assessment Report of IPCC. This scenario accounts for continuously increasing global population
ith regionally oriented economic development, and slower technological change. They focused on a multi-story Type B building and
14
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Fig. 13. Future climate wind speed time series for (a) RCP 4.5 Wm−2 and (b) RCP 8.5 Wm−2; the markers and shaded region showing the mean and one
tandard deviation, respectively, for annual daily values produced by the created future EnergyPlus Weather (EPW) weather file; showing selected months of
anuary, April, July, and October.

sed the EnergyPlus for building energy analysis. In both cities, no substantial change in the building heating demand is predicted,
ut an increase of ∼30% in building cooling demand is predicted by 2080.

In another study, P. Tootkaboni et al. [3] investigated the building energy demand for Rome, Italy, from the present time to
050 using three weather generator tools: WeatherShiftTM, CCWorldWeatherGen, and Meteonorm, considering the RCP 8.5 Wm−2

cenario. They focused on multi-story residential buildings, and conducted the building energy analysis using EnergyPlus. All the
eather generator tools used the statistical downscaling approach and provided similar results. They reported a heating demand
ecrease of ∼25% and a cooling demand increase of ∼35% by 2050.

The VWFG and VCWG results are in agreement with previous studies mentioned above, so that in most locations with future
limates considered, the decrease in building heating demand is less than the increase in building cooling demand. The specific
uantitative values may change given the simulation tools used, future climate scenario, building type, and the region of interest.

. Conclusions and future work

Urban physics models require reliable weather files for future climate scenario simulations. Two common approaches to produce
uch files are statistical and dynamical downscaling methods. While statistical downscaling can be computationally fast, it can be
ess accurate than the computationally expensive dynamical downscaling method.

Current statistical downscaling methods are based on the morphing technique, in which the statistics of future weather variables
e.g. mean and standard deviation) are matched by selecting and manipulating historical weather files at high temporal resolution,
15
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Fig. 14. Annual building energy demand for (a) sensible heating and (b) sensible cooling for RCP 4.5 and 8.5 Wm−2.

o that future weather files can be generated. Multiple tools are available for general use based on the statistical downscaling
echnique, such as WeatherShiftTM, CCWorldWeatherGen, and Meteonorm.

Despite the advances, several gaps remain in development of statistical downscaling methods for weather file generation: (1)
ack of flexibility in the driving datasets that are used in a tool, such as the choice of Climate Model (CM) and the historical weather
iles based on observations or reanalysis data products, (2) lack of consideration for selecting the historical weather files over an
xtended period of time (at least two decades), instead of relying on only a few Typical Meteorological Year (TMY) or eXtreme
eteorological Year (XMY) files, (3) lack of flexibility in the choice of the number of meteorological variables for statistical analysis

e.g. dry bulb temperature, wind speed, etc.), and (4) lack of simplicity.
In this study a new weather file generator is proposed. Titled the Vatic Weather File Generator (VWFG), this tool overcomes

he previous difficulties in future weather file generators based on the statistical downscaling technique. The VWFG (1) applies a
ias correction procedure on a quantile–quantile basis to improve the validation or future CM records; (2) employs the Finkelstein–
chafer (F-S) statistic on a quantile–quantile basis to match the validation or future CM records to the corresponding historical
eather file records; and (3) applies the shifting–stretching technique to monthly distributions of historical weather data so they
atch with the validation or future climate variable means and standard deviations.

This implementation of the VWFG is forced by the CanRCM4 model as CM records and the ERA5 reanalysis data product as the
eather file records. The historical period is 1980–1999, the validation period is 2007–2020, and the future period is 2021–2100.
he climate of Toronto, Canada, is analyzed under Representative Concentration Pathway (RCP) scenarios of 4.5 and 8.5 Wm−2.
urther, an urban physics models, titled the Vertical City Weather Generator (VCWG), is forced by the output of VWFG to predict
he building sensible heating and cooling demands for a two-story single-family residential house in Toronto. The outcome of the
nalysis suggests that the building sensible heating demand is reduced over time (∼15–30% for RCP 4.5–8.5 Wm−2) and the building
ensible cooling demand is increased over time (∼20–50% for RCP 4.5–8.5 Wm−2) by 2100. The amount of change is greater for RCP
.5 than RCP 4.5 Wm−2.

VWFG has practical implications for creating future weather files to force urban physics simulations under different future climate
cenarios. Users of VWFG will have a very flexible platform that is easy to utilize and widely applicable to generate the required
eather files for any geographic location, time period, and future scenario of interest. This is particularly helpful where limited
16
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Journal of Building Engineering 67 (2023) 105966A.A. Aliabadi and R.M. McLeod

a
b
e

C

o

Future work shall entail application of VWFG in different locations and various climate zones. VWFG’s performance can
lso be assessed by considering various forcing datasets and different choices of meteorological variables. Using VWFG, various
uilding energy retrofit options can be investigated to understand which alternative and renewable energy systems can reduce the
nvironmental impact of urban areas in future climates.
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